
FSAN/ELEG815: Statistical Learning

Gonzalo R. Arce
Department of Electrical and Computer Engineering

University of Delaware

5a: The Linear Model and Optimization

1/34

FSAN/ELEG815

Linear Regression - Credit Example

Regression ≡ Real-valued output

Classification: Credit approval (yes/no)
Regression: Credit line (dollar amount)

Input: x =

age 23 years
gender male

annual salary $30,000
years in residence 1 year

years in job 1 year
current debt $15,000

... ...

Linear regression output: h(x) =∑d
i=0wixi = wTx

2/34

FSAN/ELEG815

Credit Example Again - The data set

Input: x =

age 23 years
gender male

annual salary $30,000
years in residence 1 year

years in job 1 year
current debt $15,000

... ...

Output:

h(x) =
d∑

i=0
wixi = wTx

Credit officers decide on credit lines:

(x1,y1),(x2,y2), · · · ,(xN ,yN)

yn ∈ R is the credit for customer xn.

Linear regression wants to automate this task, trying to replicate human
experts decisions.

3/34

FSAN/ELEG815

Eout is unknown

Linear regression algorithm is based on minimizing the squared error:

Eout(h) = E[(h(x)−y)2]

where E[·] is taken with respect to P (x,y) that is unknown.
Thus, minimize the in-sample error:

Ein(h) = 1
N

N∑
n=1

(h(xn)−yn)2

Find a hypothesis (w) that achieves a small Ein.

4/34

FSAN/ELEG815

Illustration of Linear Regression
The solution hypothesis (in blue) of the linear regression algorithm in one and
two dimensions input. The sum of square error is minimized.

One dimension (line)
Two dimensions (hyperplane)

5/34

FSAN/ELEG815

Linear Regression - The Expression for Ein
y = w0 +w1x1 +w2x2 + ...+wpxd + ε.


y1
...
yN


︸ ︷︷ ︸

y

=


1 x11 x12 · · · x1d
...
1 xN1 xN2 · · · xNd


︸ ︷︷ ︸

X

·


w0
w1
...
wd


︸ ︷︷ ︸

w

+


ε
...
ε



Ein = 1
N

N∑
n=1

(wTxn−yn)2 X ∈ RN×(d+1)

= 1
N
||Xw−y||22 = 1

N
(Xw−y)T (Xw−y)

= 1
N

(wTXTXw−yTXw−wTXTy+yTy)

= 1
N

(wTXTXw−2wTXTy+yTy)

6/34

FSAN/ELEG815

Learning Algorithm - Minimizing Ein

ŵ = arg min
w∈Rd

1
N
||Xw−y||22

= arg min
w∈Rd

1
N

(wTXTXw−2wTXTy+yTy)

Observation: The error is a quadratic function of w
Consequences: The error is an (d+1)–dimensional bowl–shaped function of w
with a unique minimum
Result: The optimal weight vector, ŵ, is determined by differentiating Ein(w)
and setting the result to zero

∇wEin(w) = 0

I A closed form solution exists

7/34

FSAN/ELEG815

Example
Consider a two dimensional case. Plot the error surface and error contours.

Error Surface Error Contours

8/34

FSAN/ELEG815

Aside (Matrix Differentiation, Real Case):
Let w ∈R(d+1) and let f : R(d+1)→R. The derivative of f (called gradient of
f) with respect to w is:

∇w(f) = ∂f

∂w =


∇0(f)
∇1(f)

...
∇d(f)

=



∂f
∂w0
∂f

∂w1...
∂f

∂wd


Thus,

∇k(f) = ∂f

∂wk
, k = 0,1, · · · ,d

9/34

FSAN/ELEG815

Example
Now suppose f = cT w. Find ∇w(f)
In this case,

f = cT w =
d∑

k=0
wkck

and

∇k(f) = ∂f

∂wk
= ck, k = 0,1, · · · ,d

Result: For f = cT w

∇w(g) =


∇0(g)
∇1(g)

...
∇d(g)

=


c0
c1
...
cd

= c

Same for f = wT c.

10/34

FSAN/ELEG815

Example
Lastly, suppose f = wT Qw. Where Q ∈ R(d+1)×(d+1) and w ∈ Rd+1. Find
∇w(f)
In this case, using the product rule:

∇wf = ∂wT (Qw̄)
∂w + ∂(w̄T Q)w

∂w

= ∂wTu1
∂w + ∂uT

2 w
∂w

Using previous result, ∂cTw
∂w = ∂wT c

∂w = c,

∇wf = u1 +u2,

= Qw+ QTw = (Q + QT)w, if Q symmetric, QT = Q
= 2Qw

11/34

FSAN/ELEG815

Returning to the MSE performance criteria

Ein(w) =
[1
N

(wT XT Xw−2wT XT y + yT y)
]

Differentiating with respect to w and setting equal to zero, we obtain,

5Ein(w) = 1
N

(2XT Xw−2XTy+ 0)

= 2
N
XTXw− 2

N
XTy = 0

XTXw = XTy
ŵ = (XTX)−1XTy

= X†y

where X† = (XTX)−1XT is the pseudo-inverse of X.

12/34

FSAN/ELEG815

A real data set

16x16 pixels gray-scale images of digits from the US Postal Service Zip Code
Database. The goal is to recognize the digit in each image.

This is not a trivial task (even for a human). A typical human error Eout is
about 2.5% due to common confusions between {4,9} and {2,7}.

Machine Learning tries to achieve or beat this error.

13/34

FSAN/ELEG815

Input Representation

Since the images are 16×16 pixels:
I ‘raw’ input

xr = (x0,x1,x2, · · · ,x256)

I Linear model:
(w0,w1,w2, · · · ,w256)

It has too many many parameters.
A better input representation makes it
simpler.

Features: Extract useful information,
e.g.,
I Average intensity and symmetry

x = (x0,x1,x2)

I Linear model: (w0,w1,w2)
The descriptors must be representative of the data.

14/34

FSAN/ELEG815

Illustration of Features
x = (x0,x1,x2) x0 = 1

It’s almost linearly separable. However, it is impossible to have them all right.

15/34

FSAN/ELEG815

What Perceptron Learning Algorithm does?
Evolution of in-sample error Ein and
out-of-sample error Eout as a function
of iterations of PLA

I Assume we know Eout .
I Ein tracks Eout. PLA generalizes

well!

I It would never converge (data not
linearly separable).

I Stopping criteria: Max. number
of iterations.

Final perceptron boundary
We can do better...

16/34

FSAN/ELEG815

The ‘pocket’ algorithm

Keeps ‘in its pocket’ the best weight vector encountered up to the current
iteration t in PLA.

PLA Pocket

17/34

FSAN/ELEG815

Classification boundary - PLA versus Poket

PLA Pocket

18/34

FSAN/ELEG815

Linear Regression for Classification

I Linear regression learns a real-valued function y = f(x) ∈ R

I Binary-valued functions are also real-valued! ±1 ∈ R

I Use linear regression to get w where wTxn ≈ yn =±1

I In this case, sign(wTxn) is likely to agree with yn

I Good initial weights for classification

19/34

FSAN/ELEG815

20/34

FSAN/ELEG815

Definition (Steepest Descent (SD))
Steepest descent, also known as gradient descent, it is an iterative technique
for finding the local minimum of a function.
Approach: Given an arbitrary starting point, the current location (value) is
moved in steps proportional to the negatives of the gradient at the current
point.
I SD is an old, deterministic method, that is the basis for stochastic

gradient based methods
I SD is a feedback approach to finding local minimum of an error

performance surface
I The error surface must be known a priori
I In the MSE case, SD converges converges to the optimal solution without

inverting a matrix

21/34

FSAN/ELEG815

Example
Consider a well structured cost function with a single minimum. The
optimization proceeds as follows:

Contour plot showing that evolution of the optimization

22/34

FSAN/ELEG815

Example
Consider a gradient ascent example in which there are multiple
minima/maxima

Surface plot showing the multiple minima and
maxima

Contour plot illustrating that the final result
depends on starting value

23/34

FSAN/ELEG815

More General - Gradient Descent

ŵ = arg min
w∈Rd

Ein(w)

I Use the method of Gradient Descent (GD) to minimize the in-sample
error:

Ein(w) = 1
N

N∑
n=1

e(f(xn,w),yn)

by iterative steps along −∇Ein:

w(t+ 1) = w(t)−η∇Ein(w(t))

where η is the step size.

24/34

FSAN/ELEG815

Gradient Descent (GD) and Stochastic Gradient Descent (SGD)

Ein(w) = 1
N

N∑
n=1

e(f(xn,w),yn)

Gradient descent update:

w(t+ 1) = w(t)−η∇Ein(w(t))

For e(h(xn,yn)) = (wTxn−yn)2 i.e. for the mean squared error:

5Ein(w) = 2
N

(XT Xw−XTy)

Note: ∇Ein is based on all examples (xn,yn)

It is known as batch gradient descent.

25/34

FSAN/ELEG815

Example
The MSE is a bowl–shaped surface, which is a function of the 2-D space
weight vector w(n)

Surface Plot Contour Plot
Imagine dropping a marble at any point on the bowl-shaped surface.
The ball will reach the minimum point by going through the path of steepest
descent.

26/34

FSAN/ELEG815

Example
Consider a well structured cost function with a single minimum. The
optimization proceeds as follows:

Contour plot showing that evolution of the optimization

27/34

FSAN/ELEG815

Stochastic Gradient Descent (SGD)

Instead of considering the full batch, for each iteration, pick one training data
point (xn,yn) at random and apply GD update to e(h(xn,yn))
The weight update of SGD is:

w(t+ 1) = w(t)−η∇en(w(t))

For e(h(xn,yn)) = (wT xn−yn)2 i.e. for the mean squared error:

∇en(w) = 2(xnwT xn−xnyn)

28/34

FSAN/ELEG815

Stochastic Gradient Descent (SGD)

Since n is picked at random, the expected weight change is:

En [−∇e(h(xn,yn))] = 1
N

N∑
n=1
−∇e(h(xn,yn))

= −∇Ein

Same as the batch gradient descent.

Result: On ‘average’ the minimization proceeds in the right direction
(remember LMS).

29/34

FSAN/ELEG815

Stochastic Gradient Descent (SGD)
Instead of considering the full batch, for each iteration, pick one training data
point (xn,yn) at random and apply GD update to e(h(xn,yn))
The weight update of SGD is:

w(t+ 1) = w(t)−η∇en(w(t))

Since n is picked at random, the expected weight change is:

En [−∇e(h(xn,yn))] = 1
N

N∑
n=1
−∇e(h(xn,yn))

= −∇Ein

Same as the batch gradient descent.

Result: On ‘average’ the minimization proceeds in the right direction.

30/34

FSAN/ELEG815

Benefits of SGD
1. Cheaper computation (by

a factor of N compare to
GD)

2. Randomization
3. Simple

Rule of thumb:
Start with:

η = 0.1 works!

Randomization helps to avoid local minima and flat
regions.

SGD is successful in practice!

31/34

FSAN/ELEG815

SGD in Action
Remember movie ratings, we solved this using SVD:

I Describe the movie as an
array of factors vj

I Describe each viewer using
same factors ui

I Rating rij based on
match/mismatch A model for movie rating

SVD is computationally expensive and requires care
dealing with missing data, use SGD instead.

32/34

FSAN/ELEG815

The Learning Approach
The learning algorithm does reverse-engineering (estimates factors from a
given rating).
I Starts with random

(meaningless) factors
I Tunes factors to be aligned

with a previous rating.
I Does the same for millions

of ratings, cycling over and
over.

I Eventually the factors are
meaningful (complete).

Let’s use Stochastic Gradient Descent

33/34

FSAN/ELEG815

SGD in Action
Consider the error for each data point
rij as

ei,j =
rij−

K∑
k=1

uikvjk

2

= (rij−uT
i vj)2

Regularized Minimization problem:

min
u∗,v∗

∑
(l,m)∈K

(rlm−uT
l vm)2 +λ(||ul||2 + ||vm||2)

rlm with (l,m) ∈ K is the set of all known ratings. Apply SGD to compute u∗
and v∗:

ul(t+ 1) = ul(t)−η∇elm(ul(t))
vm(t+ 1) = vm(t)−η∇elm(vm(t))

34/34

FSAN/ELEG815

SGD in Action
For each known rating, compute the gradient:

∇elm(ul) = −2vm(rlm−uT
l vm) + 2λul

∇elm(vm) = −2ul(rlm−uT
l vm) + 2λvm

Thus, the parameters (factors) are updated according to:

ul(t+ 1) = ul(t)−2η(−vm(t)elm(t) +λul(t))
vm(t+ 1) = vm(t)−2η(−ul(t)elm(t) +λvm(t))

Rearranging and setting γ = 2η:

ul(t+ 1) = ul(t) +γ(elm(t)vm(t)−λul(t))
vm(t+ 1) = vm(t) +γ(elm(t)ul(t)−λvm(t))

where elm = rlm−uT
l vm, γ is the learning rate parameter and λ a

regularization parameter.

