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Linear Regression - Credit Example

Regression = Real-valued output

Classification: Credit approval (yes/no)
Regression: Credit line (dollar amount)

age 23 years
gender male
annual salary | $30,000
Input: x =/ years in residence | 1 year
years in job 1 year
current debt $15,000

Linear regression output: h(x) = sz:o wixr; = wlx
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Credit Example Again - The data set

age 23 years
gender male Output:
annual salary | $30,000
Input: x =| years in residence | 1 year szmz wl'x
years in job 1 year
current debt $15,000

Credit officers decide on credit lines:
(x1,91), (X2,92), -+, (XN, YN)
yn € R is the credit for customer x,,.

Linear regression wants to automate this task, trying to replicate human
experts decisions.
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E,.+ is unknown

Linear regression algorithm is based on minimizing the squared error:
Eout(h) = E[(h(x) = y)?]

where -] is taken with respect to P(x,y) that is unknown.
Thus, minimize the in-sample error:

1 XN )2
h = 2 (hix

Find a hypothesis (w) that achieves a small Ej,.
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[llustration of Linear Regression

The solution hypothesis (in blue) of the linear regression algorithm in one and
two dimensions input. The sum of square error is minimized.

T ?l
#\/562
Two dimensions (hyperplane)

X

One dimension (line)
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Linear Regression - The Expression for E;,

Yy = wo+wiXy+waXg+...+wpXq + €.
wo
1
U1 X11  X12 X1d w1 €
: = : Z : : : +
YN I Xy1 Xn2 '+ Xng ' €
—_—— Wq
N w
1
En = — > (Wxy—yn)? X e RV (d+1)
anl
1 2
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1
W = argmin —|Xw—y|[3
gmin, I/ Xw -yl
. TyT TyT T
= arg min w X" Xw— 2w’ X y+
g min y+y'y)

Observation: The error is a quadratic function of w

Consequences: The error is an (d+ 1)-dimensional bowl-shaped function of w
with a unique minimum

Result: The optimal weight vector, w, is determined by differentiating E, (w)
and setting the result to zero

VwEin(w) =0

» A closed form solution exists
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Example

Consider a two dimensional case. Plot the error surface and error contours.
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Figure 5.6 Error-performance surface of the two-tap transversal fiter described in the
numerical examy ple.

Figure 5.7 Contour plots of the error-performance surface depicted in Fig. 5.6.

Error Surface Error Contours
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Aside (Matrix Differentiation, Real Case):
Let w € R and let f:R(@*D — R. The derivative of f (called gradient of

f) with respect to w is:

Vo(f) 821];
vu(n =2 | T o
Va(f) é%d
Thus,
Vi) =L k=0
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Example
Now suppose f =c’w. Find V(f)
In this case,
d
f= c'w= Z WECk
k=0
and
0

Result: For f =c’w

Vo(g) co

Vi(g) c1

Vw(g) = ; = =cC
V.(g) Cd

Same for f =w'c.
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Example
Lastly, suppose f = w’Qw. Where Q € R(¢+Dx(@+1) 3nd w € R4+, Find

Vw(f)

In this case, using the product rule:

owT(Qw) owl'Q)w

Vuf = N
Wf ow Oow
owlu;  Ouw
= +
ow ow
T T
Using previous result, 25 = 9% ¢ — ¢,

Vwf = ui+ug,
Qw+Q'w=(Q+Q7)w, if Q symmetric, Q7 =Q
= 2Qw
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Returning to the MSE performance criteria
1
Ein(w) = [N (WwIXTXw — 2w Xy +yTy)

Differentiating with respect to w and setting equal to zero, we obtain,

1
VEin(w) = N(QXTXW —2XTy +0)
2 2

= XIxw-=XxTy=
N XWXy =0

XTxXw = XTy
w = (XTX)"1xTy

where X' = (XTX)~1X” is the pseudo-inverse of X.
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A real data set

16x16 pixels gray-scale images of digits from the US Postal Service Zip Code
Database. The goal is to recognize the digit in each image.

This is not a trivial task (even for a human). A typical human error E,,; is
about 2.5% due to common confusions between {4,9} and {2,7}.

Machine Learning tries to achieve or beat this error.
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Input Representation

Since the images are 16 x 16 pixels:
» ‘raw’ input
Xp = (10,21,%2," " ,256)

» Linear model:

(wo, w1, w2, -+, was6) Features: Extract useful information,
It has too many many parameters. €8
A better input representation makes it > Average intensity and symmetry
simpler. X = (r0,21,22)

» Linear model: (wp,wi,w2)

The descriptors must be representative of the data.
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l[lustration of Features

x = (rg,x1,72) wp=1

: Symmetry

x2

-~

=
S

21 @ Average Intensity

It's almost linearly separable. However, it is impossible to have them all right.
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What Perceptron Learning Algorithm does?

Evolution of in-sample error E;,, and
out-of-sample error E,,; as a function
of iterations of PLA

» It would never converge (data not
linearly separable).

» Stopping criteria: Max. number

0% Fout of iterations.

10%

1%

Ein

0 250 500 750 1000
Interations

5 : Symmetry

» Assume we know E,,; .

» FE;, tracks E,,:. PLA generalizes
well!

A
1 : Average Intensity

Final perceptron boundary
We can do better...
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The ‘pocket’ algorithm

Keeps ‘in its pocket’ the best weight vector encountered up to the current
iteration ¢t in PLA.

PLA Pocket
50% Eout 50%
10% 10%
|| |
L Eout
1% 1%
Ein
Ein
0 250 500 750 1000 0 250 500 750 1000

Interations Interations
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Classification boundary - PLA versus Poket

: Symmetry

x2

*
x1 : Average Intensity

Pocket

o : Symmetry

x1 : Average Intensity
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Linear Regression for Classification

» Linear regression learns a real-valued function y = f(x) € R

» Binary-valued functions are also real-valued! +1 € R

T

» Use linear regression to get w where w* x,, ~ 1y, = £1

T

» In this case, sign(w’ x,,) is likely to agree with y,

» Good initial weights for classification
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Linear regression boundary

X
*xx *xx"
E % x°
w ¥s
- X
E X
> x %
wn % X
X x
0 X

Average Intensity
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Definition (Steepest Descent (SD))

Steepest descent, also known as gradient descent, it is an iterative technique
for finding the local minimum of a function.

Approach: Given an arbitrary starting point, the current location (value) is
moved in steps proportional to the negatives of the gradient at the current
point.
» SD is an old, deterministic method, that is the basis for stochastic
gradient based methods
» SD is a feedback approach to finding local minimum of an error
performance surface
» The error surface must be known a priori
» In the MSE case, SD converges converges to the optimal solution without
inverting a matrix
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Example

Consider a well structured cost function with a single minimum. The
optimization proceeds as follows:

Contour plot showing that evolution of the optimization
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Example

Consider a gradient ascent example in which there are multiple
minima/maxima

A‘, VAB'AN | ‘
A 7
o
i
'I

i

Surface plot showing the multiple minima and Contour plot illustrating that the final result

maxim .
axima depends on starting value
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» Use the method of Gradient Descent (GD) to minimize the in-sample
error:

AR
E; (W) = N Z e(f (Xnaw)uyn>
by iterative steps along —V E;,,:
w(t+1)=w(t) —nVEi(w(t))

where 7 is the step size.
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Gradient descent update:
w(t+1) =w(t) =nVEin(w(t))
For e(/1(%n,yn)) = (W', —yn)? i.e. for the mean squared error:

2
—(XTXw-XTy)

VEin(w) =

Note: V Ejy, is based on all examples (x,,,vn)

It is known as batch gradient descent.
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Example

The MSE is a bowl-shaped surface, which is a function of the 2-D space
weight vector w(n)

A Eout(w) W, _ anut

> W
Eout (W)

W

x/

Surface Plot

Contour Plot

Imagine dropping a marble at any point on the bowl-shaped surface.

The ball will reach the minimum point by going through the path of steepest
descent.
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Example

Consider a well structured cost function with a single minimum. The
optimization proceeds as follows:

Contour plot showing that evolution of the optimization
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Stochastic Gradient Descent (SGD)

Instead of considering the full batch, for each iteration, pick one training data
point (X,,y,) at random and apply GD update to e(h(x,,,¥,))

The weight update of SGD is:
w(t+1)=w(t)—nVe,(w(t))
For e(/(xpn,yn)) = (W%, —yn)? i.e. for the mean squared error:

Ve, (w) = 2(xanxn — XpYn)
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Stochastic Gradient Descent (SGD)

Since n is picked at random, the expected weight change is:

1 N
E, [_ve(h(xmyn))] = N Z _ve(h(xmyn))
n=1
= _VEz'n
Same as the batch gradient descent.

Result: On ‘average’ the minimization proceeds in the right direction
(remember LMS).
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Stochastic Gradient Descent (SGD)

Instead of considering the full batch, for each iteration, pick one training data
point (X,,y,) at random and apply GD update to e(h(x,,¥,))

The weight update of SGD is:
w(t+1) =w(t) —nVe,(w(t))

Since n is picked at random, the expected weight change is:

1 N
E, [_ve<h(xn>yn))] = N Z —Ve(h<Xn,yn))
n=1
= _VEin
Same as the batch gradient descent.

Result: On ‘average’ the minimization proceeds in the right direction.
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Benefits of SGD

1. Cheaper computation (by
a factor of N compare to

GD)

2. Randomization

Ein

3. Simple
Rule of thumb: Weights, w
Start with: Randomization helps to avoid local minima and flat
n=0.1 works! regions.

SGD is successful in practice!
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SGD in Action

Remember movie ratings, we solved this using SVD:

viewer (@[c@ o] ole]
t Uy UppUyg Uy
» Describe the movie as an :
movie (el@l.| l®
array of factors v; ; ; 1’1: o]@ | :
j1 52 43 JK
» Describe each viewer using
same factors u; T
> Rating r;; based on rating

matCh/mlsmatCh A model for movie rating

SVD is computationally expensive and requires care
dealing with missing data, use SGD instead.
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The Learning Approach

The learning algorithm does reverse-engineering (estimates factors from a
given rating).

> .
Starts with random v|ewer @[e @@ (o]e]

(meaningless) factors TITIRTIA Wy
» Tunes factors to be aligned

with a previous rating. m°}’ie [e]@[-[- @ — B0
» Does the same for millions 12 B e

of ratings, cycling over and T

over. "ij

» Eventually the factors are

meaningful (complete).

Let's use Stochastic Gradient Descent
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SGD in Action

. . vnewer (@] [@[@[®] s [o]
Consider the error for each data point DRI Uy
Tig as X

movie ef@-[ ® O
YUYz Us Uk

2
T 2
em:( Zuzk%k) (rij —u; vj)

Regularized Minimization problem:

min > (rm — ) Vin)® + Al + v *)

* 3k
u* v

Tim With (I,m) € IC is the set of all known ratings. Apply SGD to compute u*
and v*:

w(t+1) = w(t) —nVey(w(t))

Vnlt+1) = V() = Ve (v (1))
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SGD in Action
For each known rating, compute the gradient:
Veun(w) = —2vy(ry, — ulTvm) + 2\
Vern(Vin) = —=2ui(rpm — ul Vi) +2X\v,,

Thus, the parameters (factors) are updated according to:

w(t+1) = w(t)—2n(—vp(t)epm(t) + A uy(t))
wnt51) = vin(1) — 20(—w(Dern(t) + Man(1)

Rearranging and setting v = 2n:

Wt+1) = wlt)+ e v (t) — A (t))
Valt+1) = Vialt) (et (Dun(t) = v (1))

where e, = T'im — ufvm, v is the learning rate parameter and \ a
regularization parameter.



